More stories

  • in

    La crisi della riproducibilità dei dati scientifici: che fare?

    La riproducibilità, cioè la possibilità di riprodurre un risultato scientifico quando un esperimento viene ripetuto da un diverso gruppo di ricerca, è considerata uno dei fondamenti che legittimano lo status della scienza. In realtà, sovente viene usato anche un altro termine, replicabilità, e nella letteratura scientifica c’è parecchia confusione.Un documento preparato nel 2019 dalle Accademie scientifiche degli USA ha cercato di fare chiarezza, concludendo che riproducibilità significa ottenere gli stessi risultati utilizzando gli stessi dati in ingresso, gli stessi approcci computazionali, metodi, codici e procedure di analisi; replicabilità significa ottenere risultati concordanti fra studi mirati a risolvere lo stesso problema scientifico, ottenuti a partire ciascuno da un set diverso di dati. Che si tratti dell’uno o dell’altro approccio, l’obiettivo è quello di garantire che i risultati siano affidabili e utilizzabili da tutti.

    Come tutti i grandi fondamenti, il confine fra mito e realtà è sfumato e complesso. E l’attenzione della stampa scientifica si è concentrata, negli ultimi anni, sulle criticità che rischiano di minare questo fondamento. L’argomento ha stimolato una serie di articoli sulle maggiori riviste scientifiche, in particolare Nature. Anche restando alla stampa nostrana, un contributo interessante si può leggere nell’articolo di D. Eisner uscito su pH, la rivista della Società italiana di fisiologia a inizio 2021.

    Esperimenti flop

    Più recentemente, una delle occasioni che hanno riacceso la discussione è stato un articolo, pubblicato su Nature nel dicembre 2021, che riferisce come uno studio condotto negli USA, durato 8 anni e costato 2 milioni di dollari, mirato a replicare dati preclinici sul cancro considerati molto rilevanti, ha prodotto risultati inquietanti: meno di metà degli esperimenti hanno superato il vaglio. Lo studio, finanziato da enti e fondazioni filantropiche privati, si proponeva di ripetere 193 esperimenti da 53 lavori, ma è riuscito a ripeterne solo 50 da 23 lavori. I risultati sono stati riassunti in due articoli. Nel primo, vengono elencate le difficoltà incontrate. Per ogni esperimento è stato necessario contattare gli autori per consigli e informazioni sui protocolli sperimentali, non riportati in dettaglio negli articoli originali. Il 26% degli autori si è dimostrato “estremamente collaborativo”, perdendo anche mesi per dare informazioni e scambiare reagenti; il 32% (!) è stato «assolutamente non collaborativo», in molti casi non rispondendo per niente. L’estrema complessità del progetto (in media ci sono volute 197 settimane per replicare un lavoro) ha fatto lievitare i costi (fino a 53.000 dollari per esperimento) e ha così costretto a ridimensionare l’obiettivo iniziale.

    Il secondo articolo riporta i risultati. Solo il 46% dei tentativi di replicazione ha potuto confermare le conclusioni originali. E, in media, le dimensioni degli effetti erano più ridotte (85% in meno) di quelli riportati in origine. Molti dei ricercatori oggetto delle verifiche hanno criticato il rapporto, affermando di aver avuto conferme da altri lavori e che i protocolli usati dal progetto non erano sempre completi. Il fatto è che è che i processi di replicazione sono molto difficili: piccole differenze nella manipolazione dei materiali, non identificabili nei protocolli, possono portare a differenze anche significative. Qualcuno fa notare che un ricercatore, in una ricerca indipendente, ha riferito di essere riuscito a confermare i risultati di solo 6 dei 53 lavori di alto profilo che ha analizzato, pur avendo lavorato in stretto rapporto con gli autori dei lavori.

    La riproducibilità, una faccenda complicata in cerca di soluzioni

    Alcuni hanno parlato esplicitamente di “crisi della riproducibilità”. A questo punto il dibattito si è incentrato su cause e rimedi: e qui il quadro si fa complicato. Le proposte non mancano ma la loro applicabilità non è così ovvia. Ecco un breve elenco di alcuni dei rimedi proposti: uso degli studi in cieco; campioni più numerosi: maggior rigore statistico; pre-registrazione dei progetti. I ricercatori dovrebbero fare meno affermazioni a effetto e fornire prove più solide, e fare della condivisione dei dati un fondamento della propria ricerca.

    In realtà, proposte simili – e il problema che le sottende – non sono nuovi. Già un decennio fa, il National Institute of Neurological Disorders and Stroke (NINDS) aveva organizzato un workshop con l’obiettivo di migliorare la rigorosità della ricerca preclinica. Le raccomandazioni erano state molto semplici, e analoghe a quelle riportate sopra.

    Ma dieci anni dopo, molti ricercatori non seguono queste regole. Quali sono le cause? La risposta più comune è dare la colpa agli “incentivi perversi”: i ricercatori sono premiati per la quantità di pubblicazioni, non per la correttezza. Ma questa spiegazione può essere troppo semplice. Un’etnografa, usando gli strumenti della sua professione, si è messa a studiare il background culturale dei ricercatori in biomedicina, in particolare di quelli che lavorano nella ricerca preclinica con animali, e il quadro che ne esce è più complesso. In molti casi la necessità di studi in cieco si scontra con le regole di gestione del laboratorio o degli stabulari; le esigenze della ricerca preclinica possono non essere facilmente apprezzate da chi lavora sui pazienti, e così via. Il problema è quindi strutturale, insito nei meccanismi di produzione dei dati scientifici.

    Una nuova cultura basata sull’autocorrezione

    L’obiettivo è allora quello di sviluppare protocolli riproducibili in modi che riducano le paure dei ricercatori e non le aumentino, e di creare una cultura che includa la disponibilità all’autocorrezione e vedere i tentativi di replicazione non come una minaccia ma come uno stimolo al miglioramento: «va cambiata tutta la cultura della ricerca”, come ha affermato uno studioso. Un cambiamento di questo genere avrebbe conseguenze che vanno al di là degli Stati Uniti, e contribuirebbe a migliorare la fiducia del pubblico nella scienza.

    D’altra parte, qualcuno ha anche tentato di quantificare i costi delle ricerche non riproducibili, e si è arrivati a una stima fra i 10 e i 50 miliardi di dollari spesi in studi che impiegano metodi non adeguati. E si tratta in larga misura di soldi che sono arrivati dalle agenzie pubbliche. I National Institutes of Health (NIH) statunitensi hanno cercato di affrontare il problema con una svolta che molti considerano radicale: dal gennaio 2023 cominceranno a richiedere a ricercatori ed enti che ricevono i suoi finanziamenti di includere nelle domanda un piano esplicito di come verranno gestiti i dati e in seguito di renderli pubblici.

    Pro e contro del data sharing

    Il data sharing è considerato da molti ricercatori la risposta necessaria, anche se alcuni pensano che l’applicabilità pratica non sia così semplice e che i più danneggiati potrebbero essere i giovani ricercatori, sottoposti a ritmi e condizioni di lavoro già oggi molto pesanti, e che in molti casi non hanno a disposizione il supporto manageriale per gestire il lavoro extra che sarà necessario. Perché questa svolta “sismica” nella politica di finanziamento della ricerca possa funzionare, è stato fatto notare che deve essere fatta chiarezza su come l’NIH metterà a disposizione fondi addizionali, mirati in particolare ai ricercatori a inizio carriera, per rispondere alle maggiori esigenze burocratiche, in modo che l’iniziativa, al di là delle buone intenzioni, non aumenti le diseguaglianze presenti nella comunità scientifica.

    Come si vede, una volta sollevata la pietra, è difficile capire dove andrà a cadere; modificare uno status quo consolidato è complicato e può avere conseguenze non facilmente controllabili. Per finire, c’è anche chi sostiene che la “crisi di riproducibilità” non riguarda solo la ricerca preclinica e clinica, e non va esagerata: la difficoltà a riprodurre i dati fa parte del processo di formazione della conoscenza scientifica, e comporta la necessità di conciliare risultati e interpretazioni differenti e di arrivare a una sintesi migliore, processo che può richiedere tempi non brevi: «I successi richiedono fallimenti». Ma qui il discorso si farebbe molto più lungo. LEGGI TUTTO

  • in

    Tumore al seno: un algoritmo per aiutare gli oncologi a scegliere le migliori terapie

    Nel 2020 in Europa sono stati diagnosticati circa 355 500 nuovi casi di tumore al seno, corrispondenti al 30% delle diagnosi di nuovi tumori ricevute in totale dalle donne europee in quell’anno. Le morti associate sono state quasi 92 000 e rappresentano tra il 15% e il 20% del totale delle morti causate dal cancro tra le donne.Considerando coloro che hanno ricevuto una diagnosi di tumore al seno tra il 2000 e il 2007, il tasso di sopravvivenza a cinque anni, cioè la percentuale di donne che sono ancora vive cinque anni dopo la diagnosi, è in media dell’82%, ma varia molto da paese a paese. In paesi come Italia, Francia, Germania è circa l’85%, mentre nei paesi dell’est scende al 74%.

    I tumori al seno sono estremamente variegati dal punto di vista molecolare. Per esempio, negli anni Settanta del Novecento i ricercatori capirono che i tumori al seno che possiedono il recettore per l’ormone estrogeno, beneficiano dalla somministrazione del tamoxifene, un farmaco antagonista dell’estrogeno. Esistono altre caratteristiche che possono orientare in modo simile la scelta delle diverse terapie, che oggi comprendono oltre alla chirurgia, diversi protocolli di chemioterapia, ormonoterapia e radioterapia.

    Tuttavia, ci sono ampi margini lasciati alla valutazione individuale degli oncologi.

    Attualmente il modello di riferimento per la scelta delle terapie è quello di unità multidisciplinari dedicate, chiamate breast unit, in cui diversi specialisti si confrontano sui singoli casi e li discutono collegialmente anche alla luce delle linee guida internazionali.

    Il lavoro delle breast unit potrebbe beneficiare dalle informazioni contenute nei dati che i centri clinici raccolgono sui loro pazienti. La sempre maggiore disponibilità di algoritmi di apprendimento automatico in grado di estrarre conoscenza da questi dati ha portato allo sviluppo di sistemi automatici di assistenza alla decisione che possano contribuire alla scelta delle terapie.

    Secondo una rassegna pubblicata lo scorso anno sulla rivista PLOS ONE e che ha considerato una trentina di studi sul tema, la maggior parte di questi modelli sono stati sviluppati dopo il 2013 e si sono concentrati finora sulla previsione della sopravvivenza a cinque anni.

    L’ampiezza dei campioni considerati, le performance di questi modelli e la possibilità di generalizzare i risultati su campioni diversi da quelli considerati negli studi sono molto eterogenee.

    Tuttavia, la sopravvivenza non è l’unica misura significativa per valutare l’efficacia delle terapie. Esistono altri eventi che vale la pena considerare tra cui la ricomparsa dello stesso tumore o la comparsa di sue metastasi in altri organi, ma anche lo sviluppo di secondi tumori, diversi dal primo, oppure di tumori al seno inizialmente non interessato da malattia. È stato infatti osservato che la chemioterapia può aumentare il rischio di insorgenza di secondi tumori.

    In un nuovo studio pubblicato a settembre sulla stessa rivista, un gruppo di oncologi, matematici e statistici coordinati dalla fisica medica Raffaella Massafra dell’Istituto Tumori Giovanni Paolo II di Bari ha sviluppato un algoritmo che prevede se la paziente a cinque o dieci anni dalla diagnosi andrà incontro non alla morte, ma a uno degli eventi elencati prima, quindi ricorrenze del tumore primario, metastasi, secondi tumori e tumori al seno opposto a quello della prima diagnosi.

    Lo studio ha considerato un campione di 529 pazienti che si sono rivolte all’Istituto tra il 1995 e il 2019, ricevendo una diagnosi di tumore al seno.

    Per ciascuna paziente sono state raccolte 28 variabili, tra cui la presenza dei recettori per estrogeno e altri ormoni, il diametro del tumore, la sua tipologia (duttale, lobulare o altro), il livello della proteina Ki67 che è correlata alla proliferazione del tumore, il grado di interessamento dei linfonodi. Sono state escluse le pazienti che hanno ricevuto chemioterapia o radioterapia prima di essere sottoposte a intervento chirurgico, così come quelle che presentavano metastasi in altri organi già al momento della prima diagnosi.

    Tutte sono state trattate inizialmente con la chirurgia e successivamente sottoposte a diverse combinazioni di chemioterapia e ormonoterapia. Di queste 529 pazienti, 142 sono andate incontro a un nuovo episodio di malattia nei 5 anni successivi alla diagnosi e 111 nei 10 anni successivi.

    L’approccio del gruppo di Bari è nuovo non solo per il tipo di esiti considerato, ma anche perché l’algoritmo è il risultato della combinazione di tre diversi algoritmi, ciascuno allenato a riprodurre al meglio gli esiti di tre diversi gruppi di pazienti.

    «Ci siamo resi conto che nel campione c’erano pazienti con tumori molto simili tra loro e che avevano ricevuto terapie simili, ma che hanno avuto decorsi molto diversi», spiega Annarita Fanizzi, statistica e tra gli autori dello studio.

    Per questo motivo, sfruttando quattro diversi tipi di algoritmi di classificazione, i ricercatori hanno individuato un gruppo di pazienti confondenti, su cui cioè le previsioni di tutti e quattro gli algoritmi fallivano nel prevedere se si fosse o meno verificato uno degli episodi tra ricorrenza, metastasi e tumori secondari. Sono stati quindi creati altri due campioni di dati a partire da quello iniziale, uno con soli pazienti non confondenti e l’altro con soli pazienti confondenti.

    Sono stati così ottenuti tre modelli, il primo allenato su un database misto, contenente sia pazienti confondenti che non confondenti, il secondo su quello con soli pazienti non confondenti e il terzo con soli pazienti confondenti. L’allenamento dei modelli è stato effettuato tramite una procedura ripetuta, spezzettando il campione di allenamento in cinque sottocampioni. Al primo passo il modello è stato allenato su quattro sottocampioni e testato sul quinto, al secondo è stato scelto un altro sottocampione per il test e i restanti quattro sono stati usati per l’allenamento. Questa procedura è stata ripetuta più volte, per vedere se il modello era stabile.

    «I tre modelli sono poi stati poi testati su dieci campioni di dati indipendenti, selezionati all’inizio e non utilizzati nelle procedure di allenamento», spiega Samantha Bove, matematica e tra gli autori dello studio. «Questi campioni contenevano sia pazienti confondenti che pazienti non confondenti», precisa. Come era atteso, la performance dei tre modelli si è degradata, in particolare per il terzo modello.

    I ricercatori hanno dunque pensato di formulare un sistema di regole per combinare le risposte dei tre modelli, ammettendo anche dei casi in cui la risposta finale fosse “non so”. Questa risposta emerge quando i risultati dei tre modelli su una singola paziente sono difficili da conciliare tra loro.

    L’algoritmo risultante, che in gergo viene chiamato di ensemble perché è in sostanza un insieme di algoritmi, ha raggiunto, per l’orizzonte dei 5 anni, accuratezza del 76%, sensibilità del 64% e specificità del 76%, e per l’orizzonte dei 10 anni, accuratezza del 71%, sensibilità del 66% e specificità dell’82%.

    «Il risultato è soddisfacente ma non è ancora sufficiente per introdurre questo strumento nella pratica clinica», commenta Fanizzi e aggiunge «stiamo già lavorando a un nuovo modello che consideri altre caratteristiche del tumore, per esempio le immagini digitalizzate delle analisi istopatologiche raccolte al microscopio, oppure dati di natura genetica».

    Queste informazioni potrebbero aiutare a discriminare tra loro le pazienti confondenti. Persone che ora appaiono simili stando alle variabili raccolte nel database potrebbe essere distinte guardando a qualche caratteristica genetica o istopatologica dei loro tumori.

    Il maggiore ostacolo all’arricchimento dei dati deriva dalla necessità di avere un numero sufficiente di pazienti. Le immagini di patologia digitale sono disponibili solo per le pazienti che si sono rivolte al centro negli ultimi anni e possono essere di difficile reperimento per coloro che non hanno effettuato il follow-up presso lo stesso istituto.

    «Per questo puntiamo a realizzare uno studio multicentrico che coinvolga altri istituti sul territorio almeno regionale», commenta la matematica Maria Colomba Comes, seconda autrice dello studio. Tuttavia, questo tipo di studi richiedono accordi di tipo legale ed etico che permettano di condividere i dati, e questi accordi richiedono tempo.

    «Il valore aggiunto del modello che abbiamo sviluppato, è che si concentra sulla popolazione di pazienti che vive sul nostro territorio di riferimento», aggiunge Fanizzi e conclude «esistono algoritmi proprietari o open source che offrono previsioni simili, ma spesso sono stati validati su popolazioni molto diverse dalla nostra per origine geografica ed è noto come questo influenzi l’efficacia delle terapie e il decorso della malattia». LEGGI TUTTO

  • in

    La chimica del click: molecole come mattoncini lego che valgono il Nobel

    Il Premio Nobel 2022 per la Chimica è stato assegnato a Barry Sharpless, Morten Meldal e Carolyn Bertozzi per aver gettato le basi della click chemistry, una forma di sintesi chimica in cui dei blocchi molecolari si uniscono in modo rapido ed efficiente, e per aver portato questo tipo di approccio nel campo della biochimica, utilizzandolo negli esseri viventi.Johan Åqvist, presidente del Comitato Nobel per la chimica, nel motivare la decisione ha affermato : «Il Premio per la Chimica di quest’anno si occupa di non complicare eccessivamente le questioni, ma di lavorare con ciò che è facile e semplice. Le molecole funzionali possono essere costruite anche seguendo un percorso semplice». Questo concetto è perfettamente in linea con i principi fondamentali della green chemistry, cioè un approccio alla chimica che prevede sintesi più snelle e veloci, possibilmente in ambiente acquoso e che producano meno scarti possibili.

    Da questo punto di vista, la click chemistry è incredibilmente efficiente e utile, soprattutto perché permette la sintesi di molecole anche molto complesse e di interesse farmaceutico, oltre che nel campo dei nuovi materiali funzionali, “montando” insieme pezzi più piccoli, un po’ come dei mattoncini LEGO che si uniscono con un clic per formare una costruzione anche incredibilmente elaborata.

    Sharpless, Meldal e la chimica del click

    Nel 2001 Sharpless pubblicò un articolo in cui ragionava sulla possibilità di un cambiamento di approccio nella chimica sintetica, in particolare per quanto riguarda la sintesi di molecole bioattive o con particolari funzioni, per esempio di interesse farmaceutico. Le molecole che più hanno affascinato i chimici e che più risultano utili, afferma Sharpless, sono quelle di origine naturale o comunque ispirate da esse. Il problema principale, quando si procede a una sintesi di queste molecole, è l’abbondante presenza di legami carbonio-carbonio anche contigui. La formazione di questo tipo di legame non è facile e necessita di una “spinta termodinamica” come, per esempio, la rimozione dell’acqua o l’aggiunta di acidi o basi forti nella reazione. Questa difficoltà si traduce in problemi tecnici, con sintesi spesso molto lunghe, che producono prodotti secondari o che necessitano di condizioni di reazione poco convenienti, come alte temperature o pressioni.

    Osservando il modo con cui le molecole complesse sono sintetizzate in natura, però, ci si accorge che a livello biochimico queste vengono spesso assemblate partendo da molecole più piccole attraverso la formazione di legami fra carbonio ed eteroatomi come ossigeno o azoto, un tipo di reazione molto più favorita rispetto a quella che porta alla formazione di legami carbonio-carbonio. Sharpless propose alcuni esempi di reazioni di questo tipo, che denominò “chimica del clic”, alcune delle quali erano già ben note e utilizzate dai chimici, anche se non nel modo suggerito. Queste reazioni avevano tutte il vantaggio di dare rese molto elevate, di non dare prodotti secondari o comunque se presenti erano facilmente separabili e inoltre, cosa fondamentale, era possibile portarle avanti in un solvente conveniente come l’acqua.

    Morten Meldal aggiunse un ulteriore tassello alla storia della click chemistry per caso. I suoi studi riguardavano la costruzione di biblioteche molecolari da cui attingere per trovare molecole di interesse farmaceutico. Portando avanti una reazione di routine, la reazione fra un alchino e un alogenuro acilico catalizzata da rame, Meldal si accorse che l’alchino aveva invece reagito con l’estremità sbagliata e cioè con un gruppo funzionale chiamato azide, formando quindi una struttura ad anello: il triazolo. Il rame aveva indirizzato la reazione portando alla formazione di un tipo di struttura chimica molto utile, molto stabile e molto presente in molecole importanti per l’industria agroalimentare o farmaceutica, ma che non era mai stato facile ottenere.

    Nel 2002 pubblicò i risultati dei suoi studi su questo tipo di reazione e quasi contemporaneamente anche Sharpless indicò questa reazione come un esempio praticamente perfetto di click chemistry, che poteva facilmente portare alla costruzione di molecole anche molto complesse partendo da blocchi semplici che andavano poi montati insieme.

    Carolyn Bergozzi e la chimica bioortogonale

    Con il termine chimica bioortogonale si indicano quelle reazioni che avvengono all’interno di un organismo vivente senza interagire né interferire con i processi biochimici naturali concomitanti. Carolyn Bergozzi è riuscita a unire questo tipo di chimica con la click chemistry, un passo fondamentale per quanto riguarda le applicazioni biomediche di queste reazioni. In particolare, i suoi studi si sono focalizzati sui glicani, carboidrati complessi che si possono spesso trovare sulla superficie delle cellule e delle proteine, che giocano un ruolo fondamentale in molti processi biologici come per esempio la risposta immunitaria.

    Il problema con i glicani era la difficoltà incontrata dai ricercatori che tentavano di studiarli più approfonditamente, perché nessuna delle nuove tecniche biologiche messe a punto intorno agli anni 90 riuscivano a individuarli adeguatamente. Bertozzi pensò che si potesse tracciare i glicani attaccandovi una molecola che fosse in qualche modo facilmente individuabile, come per esempio una molecola fluorescente. Inoltre, era necessario che la reazione con cui si univa al glicano questa appendice fluorescente fosse bioortogonale, perché il resto delle reazioni biochimiche che avvenivano nella cellula non dovevano essere intaccate affinché l’operazione si rivelasse di qualche utilità. Decise quindi di utilizzare la reazione fra un azide e un alchino messa a punto da Sharpless e Meldal, che però presentava un problema: il rame, necessario come catalizzatore, è tossico per gli organismi viventi. Il metodo che ottimizzò prevedeva l’uso di una molecola che andasse a creare una deformazione durante la reazione, che andava quindi a buon fine senza il rame, aprendo la porta alla click chemistry per applicazioni anche in esseri viventi.

    Le applicazioni della click chemistry

    Questo tipo di reazioni, proprio per la loro versatilità e varietà, possono essere utilissime a sintetizzare molecole per i più svariati campi.

    Se la creazione di biblioteche molecolari da cui attingere per la ricerca di nuovi farmaci è stata il punto di partenza da cui Meldal è partito per sviluppare gli studi che lo hanno portato al Nobel, appare evidente che le applicazioni biomediche sono forse le principali. La funzionalizzazione dei glicani attuata da Bergozzi ha reso possibile lo studio più approfondito di queste molecole, che intervengono in molti processi biochimici, permettendo lo sviluppo di tecniche per individuarli in cellule cancerose, dove sono generalmente sovraespressi.

    Un’altra possibile applicazione biotecnologica è nella funzionalizzazione di biomolecole diverse dai glicani, come per esempio l’etichettatura degli acidi nucleici che può avere ricadute pratiche in campi come la medicina, le nanotecnologie ma anche le scienze forensi. Inoltre può portare a vantaggi in futuro in studi di genomica.

    Un altro campo in cui queste sintesi si sono rivelate utilissime è quello della produzione di nuovi materiali, in particolare materiali polimerici. Questo perché reazioni click permettono di funzionalizzare facilmente un materiale, ad esempio polimerico, aggiungendo “pezzi” molecolari con caratteristiche definite esattamente nei punti dove quella caratteristica può essere utile.

    È inoltre possibile costruire strutture macromolecolari con architetture ben definite inclusi polimeri a blocchi, ramificati, a stella e ciclici assemblando gruppi funzionali sulle catene laterali o sulla superficie. Questo tipo di costruzione può avere applicazioni anche in campi come l’energia e l’elettronica. LEGGI TUTTO

  • in

    Per chi suona la campana del Nobel per la fisica

    Ieri, l’Accademia Svedese delle Scienze ha assegnato a John Clauser, Alain Aspect e Anton Zeilinger il premio Nobel per la fisica 2022 per aver realizzato “esperimenti con fotoni entangled, dimostrando la violazione delle disuguaglianze di Bell e facendo da pionieri nel campo dell’informazione quantistica”.«È un Nobel che aspettavamo», ha dichiarato Paola Verrucchi, ricercatrice presso l’Istituto di Sistemi Complessi del CNR a Firenze, «è il riconoscimento di un percorso culturale, non solo scientifico e tecnologico, che si è esteso per quasi un secolo e ha dimostrato la validità dei principi fondamentali della meccanica quantistica, aprendo la strada ad applicazioni straordinarie, come la crittografia e la computazione quantistica.»

    Il percorso culturale a cui si riferisce Verrucchi ebbe inizio nel 1935, con un articolo pubblicato sulla rivista Physical Review Letters da Albert Einstein insieme a Boris Podolsky e Nathan Rosen, venti e trenta anni più giovani del fisico tedesco già insignito del premio Nobel nel 1921.

    I tre scienziati proposero un esperimento mentale che coinvolgeva una coppia di particelle preparate in uno stato particolare, che venne successivamente chiamato entangled cioè aggrovigliato, e la cui esistenza era permessa solo dalla meccanica quantistica. Una volta che le due particelle venivano separate e portate a grande distanza, le misure simultanee di alcune loro proprietà contraddicevano uno dei principi della meccanica quantistica. La conclusione era quindi paradossale e indicava che la meccanica quantistica fosse una teoria incompleta, che mancasse cioè di descrivere alcuni aspetti della realtà.

    Ciò che turbava particolarmente Einstein era l’idea che la misura effettuata su una particella potesse influenzare quella effettuata sull’altra particella senza che vi fosse scambio di informazioni tra i due sperimentatori che le effettuavano. In altre parole Einstein era convinto che una caratteristica fondamentale di ogni teoria fisica dovesse essere la località. Gli stati entangled mettevano in crisi questa convinzione. In una lettera inviata a Max Born nel 1947, Einstein scrisse: “Non posso crederci seriamente perché la teoria non è conciliabile con l’idea che la fisica debba rappresentare una realtà nel tempo e nello spazio, libera da spettrali interazioni a distanza”.

    Per un certo tempo la discussione aperta da Einstein, Podolsky e Rosen, venne considerata di natura filosofica, “da discutere preferibilmente durante la pausa caffé”, ma nel 1964 il fisico John Bell formulò un teorema che ridiede dignità scientifica a questa contesa.

    Partendo da una delle proposte di Einstein per risolvere il paradosso, cioè quella che esistessero variabili nascoste che spiegavano il “collegamento” che le particelle entangled conservavano anche quando separate da una distanza arbitrariamente grande, Bell mostrò che una particolare combinazione delle correlazioni tra gli esiti delle misure effettuate in maniera indipendente sulle due particelle entangled non poteva superare un certo valore limite. Al contrario, assumendo che la meccanica quantistica fosse una teoria completa, quel limite poteva essere superato.

    Nel 1970, John Clauser arrivò all’Università di Berkeley per cominciare il suo primo post-doc, dopo aver completato il dottorato nell’ambito dell’astrofisica molecolare. Ma i suoi interessi si stavano spostando altrove, verso i fondamenti della meccanica quantistica. Raggiunse quindi un compromesso con il suo supervisore a Berkeley, Charles Townes: avrebbe lavorato metà tempo sulla radioastronomia e l’altra metà sui fondamenti della meccanica quantistica, sfruttando un esperimento che un giovane studente di Townes aveva lasciato nei laboratori di Berkeley.

    Servirono più di due anni per riconfigurare l’esperimento affinché potesse essere usato per misurare le correlazioni considerate da Bell.

    La sorgente di particelle entangled era un atomo di calcio i cui elettroni venivano eccitati tramite una sorgente luminosa e che nel processo di rilassamento emettevano coppie di fotoni entangled. Le proprietà che Clauser avrebbe misurato erano le polarizzazioni dei due fotoni.

    Nel 1972, Clauser e l’allora dottorando Stuart Freedman, pubblicarono i loro risultati: la correlazione misurata violava “chiaramente” la disuguaglianza di Bell. In termini statistici, la probabilità che il valore misurato fosse compatibile con quello previsto da Bell nel caso esistessero le variabili nascoste, e quindi la meccanica quantistica fosse una teoria incompleta, era dello 0,000000197%.

    La realizzazione sperimentale dello schema proposto da Bell non era unica e nel 1975 il fisico francese Alain Aspect, secondo vincitore del Nobel di quest’anno, affascinato dal lavoro di Bell, decise di mettere a punto con il suo gruppo all’Institut d’optique a Parigi una serie di esperimenti che riproducessero più fedelmente quello schema.

    Prima migliorò le tecniche sperimentali per raggiungere una maggiore forza statistica. In un articolo del luglio 1982, la probabilità che la correlazione misurata fosse compatibile con quella prevista dall’esistenza delle variabili nascoste scese a 1.5265*10^-23 (in altre parole, questo significa che se la teoria delle variabili nascoste fosse stata vera, Aspect e collaboratori avrebbero osservato un esito dell’esperimento che accade sette volte ogni diecimila miliardi di miliardi di ripetizioni).

    Sei mesi più tardi Aspect descrisse i risultati di un esperimento ancora più raffinato, che affrontava il tema della località. Una delle ipotesi di Bell era che le misure effettuate sulle due particelle fossero “veramente” indipendenti. Per garantire questa indipendenza nel suo esperimento, Aspect aveva messo a punto un sofisticato sistema che cambiava in modo casuale la direzione in cui veniva misurata la polarizzazione dei fotoni dopo che questi erano partiti dalla sorgente comune e prima che raggiungessero i rivelatori. Il sistema era sofisticato perché riusciva a cambiare la direzione in cui veniva misurata la polarizzazione dei fotoni in un tempo estremamente breve. Considerando che i rivelatori erano posti a circa sei metri dalla sorgente e che i fotoni viaggiano alla velocità della luce, il tempo a disposizione era di circa 20 miliardesimi di secondo.

    L’esperimento non era ancora “perfetto”, perché la distanza tra la sorgente di fotoni entangled e gli strumenti per misurare la polarizzazione dei fotoni era ancora troppo breve per assicurare che non ci potesse essere trasmissione di informazione. Ci vollero più di 15 anni per chiudere anche questa falla. Nel 1998 Anton Zeilinger, il terzo vincitore del Nobel di quest’anno, dimostrò che la disuguaglianza di Bell veniva violata anche misurando la polarizzazione dei due fotoni con strumenti distanti 400 metri l’uno dall’altro.

    Negli oltre vent’anni trascorsi da allora, le proprietà degli stati quantistici entangled sono diventati la base di una serie di applicazioni tecnologiche nell’ambito dell’informazione quantistica. Ne citiamo due, ma sono molte di più.

    La prima che citiamo è la possibilità di costruire ripetitori quantistici. Si tratta di dispositivi essenziali per realizzare una rete internet quantistica su fibra ottica. Il funzionamento dei ripetitori quantistici è basato sulla possibilità di realizzare il cosiddetto “teletrasporto quantistico”, ovvero trasportare istantaneamente uno stato quantistico a distanza arbitrariamente lontana a patto che la copia originale di tale stato sia distrutta. Al centro del teletrasporto quantistico c’è ancora l’entanglement e l’informazione viene teletrasportata da un punto all’altro tramite una procedura chiamata “entanglement swapping”.

    Questo processo venne realizzato sperimentalmente per la prima volta nel 1998 indipendentemente da due gruppi, uno guidato da Francesco De Martini alla Sapienza di Roma e l’altro da Zeilinger che aveva proposto per primo la procedura nel 1993 insieme a Marek Zukowski, Micheal Horne e Artur Ekert.

    La seconda applicazione che citiamo, forse la più importante, è la crittografia quantistica. Quando due interlocutori si scambiano una chiave quantistica per proteggere la loro comunicazione stanno condividendo uno stato entangled e l’intrusione di un terzo agente malevolo interessato a rubare la chiave viene segnalata da una variazione delle correlazioni introdotte da Bell. L’idea di usare le disuguaglianze di Bell per testare la sicurezza dei protocolli di crittografia quantistica venne proposta da Artur Ekert nel 1991.

    La questione aperta nel 1935 da Einstein, Podolsky e Rosen si potrà ritenere chiusa definitivamente nel 2015, quando un gruppo di ricercatori della Delft University of Technology pubblica su Nature il cosiddetto loophole-free Bell test. «Ci sono voluti ottant’anni per dimostrare la violazione della disuguaglianza di Bell oltre ogni ragionevole, e irragionevole, dubbio», commenta con una punta di ironia Fabio Sciarrino, che dirige il Quantum Lab alla Sapienza di Roma. «Il percorso culturale è strettamente collegato a quello sperimentale», prosegue, «siamo arrivati a tradurre in termini pratici il concetto di “libertà di scelta”, e questo ha portato necessariamente a una riflessione logica e filosofica».

    Sciarrino si riferisce a due lavori pubblicati nel 2018 che hanno provato a chiudere un’altra falla nei test di Bell realizzati fino a quel momento, che viene chiamata la falla della “libertà di scelta”.

    Nel suo esperimento del 1982, Aspect aveva usato generatori di numeri random per stabilire in quale direzione misurare la polarizzazione dei fotoni proprio per rendere le due misure il più possibile indipendenti. Ma alcuni scienziati avevano storto il naso. Anche se le sequenze di numeri generate sembravano davvero casuali, non si poteva escludere che ci fosse un “passato comune” tra i due generatori che in qualche modo correlasse il loro comportamento.

    Per chiudere questa falla, Zeilinger e i suoi collaboratori usarono i segnali emessi da stelle distanti tra loro, e quindi probabilmente senza passato comune, per stabilire quali polarizzazioni misurare. L’esperimento venne chiamato “Cosmic Bell Test”. Pochi mesi dopo su Nature vennero invece pubblicati i risultati della Big Bell Test Collaboration, che ha usato le decisioni indipendenti di oltre centomila partecipanti per pilotare le misurazioni sperimentali. LEGGI TUTTO

  • in

    Svante Pääbo: un Nobel all’evoluzione umana

    Il 3 ottobre è stato un giorno importante non solo per l’antropologia molecolare ma per tutti gli studi di evoluzione umana: il premio Nobel 2022 per la fisiologia e la medicina è stato assegnato a Svante Pääbo, il padre delle ricerche sul DNA antico, per il suo contributo alla decifrazione dell’intero genoma di Neandertal e di altri ominini ormai estinti.La storia dell’evoluzione umana, non solo quella della nostra specie ma di tutti gli altri ominini che l’hanno preceduta o accompagnata, è stata ricostruita per oltre un secolo unicamente attraverso l’analisi dei caratteri morfologici dei resti fossili e dei manufatti legati all’industria litica, a quella su osso e avorio e alle testimonianze artistiche. All’inizio degli anni Sessanta del Novecento però si è sviluppata in campo biologico una nuova disciplina: la genetica. E da quel momento l’antropologia ha iniziato a essere rivoluzionata. Il vero rinascimento negli studi antropologici, tuttavia, è maturato solo una trentina di anni dopo, alla fine degli anni Ottanta, quando nel laboratorio di Allan Wilson, presso l’Università della California a Berkeley, lo stesso professore e due suoi allievi, Rebecca Cann e Mark Stoneking, hanno analizzato il DNA mitocondriale (mtDNA) di molti uomini e donne di diverse popolazioni attuali e hanno stabilito che la nostra specie è nata in Africa circa 300-200 mila anni fa. Quel DNA è formato da solo 16.500 coppie di basi rispetto a circa le 3 miliardi di quello nucleare; è presente in tante copie nelle nostre cellule mentre di quello nucleare ce ne sono solo due; ed è trasmesso unicamente per via materna. Queste caratteristiche rendono l’mtDNA facile da studiare ma chiariscono la nostra storia evolutiva solo dal lato materno e bisognerà aspettare lo sviluppo di nuove tecnologie per sottoporre ad analisi il DNA nucleare e definire quindi più dettagliatamente l’evoluzione umana.

    In quegli anni è arrivato nel laboratorio di Wilson il giovane Svante Pääbo, che ha rivoluzionato ulteriormente l’antropologia utilizzando la genomica nell’analisi delle popolazioni antiche. Quindi non solo più la morfologia ma anche il DNA per studiare la nostra storia.

    I suoi primi tentativi su tessuti umani mummificati non hanno dato buoni risultati e per affinare la tecnica ha deciso di lavorare su campioni di un animale da poco estinto: il quagga. E i risultati sono stati soddisfacenti. A quel punto, Pääbo ha deciso di dedicarsi nuovamente alla storia antica degli ominini e ha fondato la paleo-genomica per verificare le differenze genetiche esistenti tra le varie specie.

    La molecola del DNA comincia a degradarsi, cioè a spezzettarsi, dopo la morte degli individui e la tecnologia attuale consente di recuperare tratti di lunghezza significativa per lo studio in reperti umani risalenti fino a circa 400.000 anni fa. Il materiale da cui ricavare il DNA quindi è quello scheletrico.

    I neandertaliani sono vissuti in Europa, Medio Oriente e Asia occidentale tra circa 400.000 e 30.000 anni fa e pertanto quell’ominino è entrato nell’interesse di Pääbo. Il problema antropologico sul quale si sono misurati gli studiosi di diverse generazioni era quello di determinare se loro e noi eravamo specie diverse o solo sottospecie di un’unica specie.

    Il primo neandertaliano su cui Pääbo ha fissato il suo interesse è stato quello che gli ha dato il nome: il fossile rinvenuto nel 1856 nella grotta di Feldhoffer, nella valle di Neander nei pressi di Düsseldorf in Germania, e per il quale William King nel 1864 creò il nome specifico di Homo neanderthalensis.

    All’inizio, Pääbo ha preso in considerazione l’mtDNA e ha dovuto risolvere subito il problema della contaminazione. Come si comprende, i fossili passano attraverso molte mani e su di essi si depositano quindi tante molecole di DNA di uomini e donne attuali, oltreché di microrganismi. Se non si fa attenzione, il DNA sottoposto ad analisi non è quello estratto dal reperto ma quello di chi lo ha toccato. Per questo, quando possibile, la polpa dei denti fossili è il materiale privilegiato, dato che è contenuto in una “scatola” sigillata, oppure si ricorre alle parti interne dello scheletro, come la rocca petrosa, la porzione dell’osso temporale di forma piramidale dove alloggiano gli organi del sistema uditivo interno. In mancanza di queste sezioni si utilizzano frammenti di ossa compatte. E i laboratori in cui si effettuano le analisi sono organizzati secondo procedure stabilite internazionalmente.

    Si deve ricordare che gli studi per ricostruire il genoma nucleare della nostra specie sono iniziati negli anni Novanta del secolo scorso e i primi risultati di quel Progetto Genoma Umano sono stati resi noti nel 2001. Negli stessi anni, Pääbo ha iniziato a ottenere alcune prime corte sequenze di mtDNA neandertaliano, la più lunga delle quali, precisamente 379 nucleotidi, è stata confrontata con quella dell’umanità attuale, dimostrandosi assolutamente estranea alla nostra variabilità. La conclusione di Pääbo è stata che noi e i neandertaliani fossimo due specie diverse che non si erano mai incrociate tra loro e che avevamo condiviso un antenato comune circa 690-550 mila anni fa.

    Naturalmente, quell’esito dello studio doveva essere verificato aumentando sia il numero di nucleotidi di mtDNA della sequenza che quello di fossili provenienti da varie parti dell’areale di distribuzione della specie. Nel 2008 Pääbo ha pubblicato l’intera sequenza dell’mtDNA neandertaliano e i risultati sono stati congruenti: mostrando una divergenza tra la loro e la nostra linea risalente a circa 660 mila anni fa.

    Quando però Pääbo è passato al DNA nucleare il quadro è cambiato. I primi risultati risalgono al 2010 e hanno dimostrato che nel nostro genoma c’è tra l’1 e il 2 per cento di DNA neandertaliano. Non in tutte le popolazioni però. Negli africani non c’era traccia di geni neandertaliani e ciò significava che gli incroci c’erano stati dopo che i primi Homo sapiens erano usciti dalla culla africana, circa 70 mila anni fa. E il luogo dove si erano incontrati è certamente il Medio Oriente. Attualmente, tuttavia, una modestissima traccia di DNA neandertaliano è stata riscontrata anche in alcuni gruppi africani: circa lo 0,3%, dovuto a migrazioni di ritorno in Africa di umanità attuale che si era precedentemente mescolata con i neandertaliani.

    Oggi sappiamo che tutte le specie animali, quindi noi compresi, non sono scatole ermeticamente chiuse. E quindi qualche modesto incrocio è possibile e documentato.

    Sempre nel 2010, Pääbo ha ottenuto un altro straordinario risultato: la prima identificazione molecolare di una specie fossile. Fino ad allora per definire una specie nuova si dovevano avere resti fossili tali da poter essere confrontati con quelli noti di altre specie. Nel 2008 però, nella grotta Denisova nei monti Altai in Russia, è venuta alla luce una falange di una giovane ominina vissuta tra 48 e 30 mila anni fa. Morfologicamente non era possibile alcuna attribuzione ma lo studio dell’mtDNA ha permesso a Pääbo di scoprire che quel DNA era diverso sia da quello neandertaliano che dal nostro. Si trattava quindi di una nuova specie ominina: Denisova. E l’antenato comune ai denisovani, ai neandertaliani e a noi sarebbe vissuto circa un milione di anni fa: quasi il doppio quindi rispetto alla data relativa dell’antenato comune ai neandertaliani e a noi.

    Lo studio del DNA nucleare ha poi dimostrato che la divergenza tra i denisovani e i neandertaliani sarebbe databile a circa 470-380 mila anni fa, mentre quella tra loro due e noi risalirebbe a circa 760-550 mila anni fa. E ancora che c’è stato un flusso genico tra i neandertaliani e i denisovani e tra questi ultimi e le sole popolazioni attuali della Melanesia.

    Il cantiere della ricerca paleo-genomica di Pääbo è tuttora aperto all’interno dell’evoluzionismo darwiniano e certamente nel prossimo futuro questa disciplina, e più in generale gli studi sulle macromolecole antiche, rivestiranno un ruolo sempre maggiore per definire nei dettagli il quadro evolutivo umano, che si sta rivelando assai complesso, e per chiarire alcuni passaggi del nostro passato che sono ancora oscuri. LEGGI TUTTO

  • in

    La rivoluzione di chip e sensori nello studio e approvazione di nuove terapie

    La pandemia di Covid 19 ha dato una svolta al dibattito sui percorsi per accelerare i tempi della ricerca e l’approvazione di nuove terapie, in particolare quelle che riguardano patologie ancora senza cura. Pur rimanendo prioritaria la necessità di fornire garanzie di sicurezza ed efficacia di un farmaco, è sempre più condivisa la volontà di trovare soluzioni che velocizzino tali iter. Gli sforzi delle istituzioni e degli enti regolatori – non senza difficoltà – per fornire indicazioni più precise, direttive certe e meno burocrazia sono stati e sono ancora numerosi. Pur tuttavia, ci sono ancora molti limiti legati alle metodologie utilizzate per condurre con successo studi clinici e giungere all’approvazione di una terapia.Negli studi preclinici per lo sviluppo di farmaci, gli strumenti attuali prevedono in gran parte l’uso di cellule coltivate in laboratorio in 2D e di modelli animali, che non sempre predicono le risposte che si avranno nell’essere umano; scarsità di informazioni e risultati fuorvianti conducono al fallimento, all’interruzione o al rallentamento di numerosissimi progetti.

    Un altro aspetto riguarda la necessità, prima di disegnare studi clinici, di avere a disposizione dati completi sulla storia naturale di una malattia che forniscano una direzione precisa. Prima che gli scienziati potessero analizzare la storia naturale del SARS-CoV-2, non c’era un valido supporto per il processo decisionale a livello nazionale e globale sul controllo del virus. Se si considerano le patologie a progressione lenta o rare, malattie piuttosto eterogenee che colpiscono una piccola popolazione, la costruzione di studi di storia naturale efficienti è una strada in salita.

    Con un numero crescente di studi clinici che utilizzano nuove terapie avanzate, tra cui la terapia genica, dimostrare il beneficio di un trattamento e scegliere la popolazione giusta da trattare sono diventati elementi vitali. Tuttavia, la determinazione di questi fattori per i pazienti con malattie rare è ancora un iter complesso, poiché le conoscenze e gli strumenti a disposizione sono tuttora piuttosto limitati.

    Negli ultimi anni, farmaci con un biomarcatore hanno avuto più possibilità di ottenere l’approvazione rispetto a quelli senza un biomarcatore, ma il percorso che va dalla scoperta alla convalida di biomarcatori richiede anni, oltre a ingenti investimenti da parte delle aziende farmaceutiche.

    In questo complesso contesto, gli studi in ambito tecnologico stanno provando a fornire valide alternative portando, pur con le attuali limitazioni dovute al loro recente sviluppo, a interessanti prospettive. Le circostanze create dalla pandemia, con l’impossibilità di spostarsi, di recarsi nelle cliniche e negli ospedali, hanno favorito l’ampio utilizzo di trial clinici in remoto, con la raccolta di dati attraverso sensori in remoto, strumenti digitali o telemedicina.

    Questo scenario ha enfatizzato la discussione sull’utilizzo dei cosiddetti biomarcatori digitali, ossia dati fisiologici o comportamentali che vengono misurati attraverso dispositivi che possono essere portatili, indossabili, impiantabili o digeribili. I dati sono raccolti al di fuori del contesto clinico tradizionale, nell’ambiente naturale del paziente, con metodiche non invasive. Tutte le informazioni passano poi attraverso algoritmi che le trasformano in misurazioni. I dispositivi sviluppati sono in grado di raccogliere elementi che con metodi e tecniche tradizionali passerebbero inosservati; ci sono sensori in grado di rilevare biomarcatori digitali della parola, movimenti oculari, battito delle palpebre e riflessi pupillari, espressione facciale e altre abilità motorie, memoria spaziale e capacità di navigazione; o sudore, saliva e respiro, solo per citarne alcuni.

    Nel 2019, la Velocità di passo 95° centile (Stride Velocity 95th Centile, SV95C) ha ricevuto la qualificazione dalla European Medicine Agency (EMA) come primo endpoint digitale derivato da dispositivi indossabili per la distrofia muscolare di Duchenne, dimostrando le potenzialità di utilizzo dei biomarker digitali negli studi clinici per misurare l’efficacia di nuovi trattamenti. L’applicazione nell’ambito delle neuroscienze è vasta; sono in corso diversi studi su disturbi motori e malattie cognitive, dell’umore, come il morbo di Parkinson, dove l’obiettivo è quantificare la gravità e la distribuzione dei sintomi motori e delle anomalie vocali legate alle prime fasi della progressione della malattia. Oltre a offrire un modo per risparmiare tempo nella raccolta di informazioni precise e puntuali, questa tecnologia sta portando alla creazione di enormi database sulle malattie, che si basano sulla raccolta di dati su un lungo periodo di tempo, e non solo durante le visite di routine dei pazienti.

    Dal punto di vista preclinico, i biomarcatori digitali traslazionali possono essere utili per perfezionare gli studi sugli animali: i dati raccolti sulla risposta fisiologica o comportamentale alla progressione della malattia o all’intervento terapeutico possono accelerare il percorso dagli studi preclinici alla clinica.

    Anche un altro approccio, seppure ancora esordiente, è visto come una via potenzialmente più breve verso l’approvazione di un farmaco: l’uso, negli studi preclinici e clinici, di micro-dispositivi progettati per supportare tessuti e cellule umani viventi, imitando in vitro la fisiologia umana e le malattie. Questi incredibili modelli, costituiti da accurate piattaforme 3D, sono chiamati tessuti su chip o organi su chip e possono integrare diversi tipi di sensori, consentendo l’analisi in tempo reale di processi biologici. Gli organi su chip permettono di osservare aspetti del funzionamento di alcune parti del corpo umano che sono difficili da esaminare con gli strumenti attualmente a disposizione; l’obiettivo di questa tecnologia è di riprodurre ciò che accade realmente nel nostro organismo, superando i limiti dei modelli cellulari 2D utilizzati finora che non rispecchiano la tridimensionalità del corpo umano. Gli scienziati hanno già creato diversi modelli 3D in vitro e in diversi luoghi del mondo si sta lavorando su polmoni, fegato, cuore, reni, intestino e persino cervello su un chip.

    C’è un enorme potenziale all’interno di questa tecnologia ai suoi albori. Tra le opportunità, c’è quella ricreare il microambiente tumorale umano in vitro per studiare il comportamento e gli aspetti della progressione del cancro, e prevedere l’efficacia e la tossicità o meno dei farmaci negli organi prima di iniziare studi clinici, riducendo i modelli animali da utilizzare; è anche possibile costruire modelli di processi infiammatori, o infezioni e risposte immunitarie, per comprendere meglio questi complessi meccanismi e sviluppare trattamenti per malattie infiammatorie, come l’Alzheimer, e per le infezioni, compresa quella da SARS-CoV-2. Le intuizioni di questi modelli potrebbero aiutare a facilitare la somministrazione di terapie, come la terapia genica, al cervello. Il nervo su chip è un tessuto motorio, neuronale o sensoriale in un ambiente 3D creato per imitare i nervi: il suo utilizzo può migliorare la conoscenza delle malattie neurodegenerative, aiutando inoltre gli sviluppatori di farmaci a testare se il loro composto è neurotossico.

    Una recente evoluzione di questa tecnologia è il multi-organo su chip, dotato di canali microfluidici (per mimare il sistema di trasporto di sostanze nel corpo) e di sistemi multisensoriali. Cuore, polmone, pelle e tessuti del fegato possono essere messi sullo stesso chip e collegati insieme per studiare il potenziale comportamento, le attività biologiche, le proprietà meccaniche, la risposta delle cellule malate a un farmaco e come questo farmaco potrebbe influenzare tutti questi organi.

    L’obiettivo finale, che per la sua ambiziosità presenta alcune sfide, è quello di creare un modello che imiti l’intero corpo umano, prevedendo con un alto livello di precisione che cosa potrebbe accadere durante gli studi in vivo, studiando le interazioni fisiologiche tra gli organi e persino le risposte ai farmaci dell’intero corpo umano. Ciò apre la possibilità di applicare questa tecnologia in studi clinici personalizzati, oltre a ridurre, come detto, gli studi su modelli animali.

    Sia i multi-organo su chip che i biomarcatori digitali necessitano di ulteriori miglioramenti per superare i loro limiti effettivi. Nel caso dei biomarcatori digitali, nonostante i numerosi tentativi, pochissimi a oggi hanno avuto un ruolo sostanziale nella ricerca; manca poi un pieno consenso sulla affidabilità dei dati prodotti attraverso l’uso di sistemi di valutazione dei parametri raccolti; inoltre, si riscontra un’ampia diversità di studi condotti e di varietà di dispositivi utilizzati; infine, poiché il fattore umano gioca un ruolo importante nell’uso sicuro ed efficace della tecnologia, un utilizzo non corretto dei dispositivi digitali può condurre fuori strada. Gli organi su chip hanno bisogno di tempo per essere perfezionati; tra le sfide vi è quella dell’approvazione da parte di tutti gli attori in gioco di un modello standard da seguire, poiché le metodologie di realizzazione sono varie; l’aspetto più complesso è tuttavia quello di allungare il ciclo della vita degli organi su chip per renderli veramente utilizzabili sul lungo periodo. Infine, è necessario sviluppare un dialogo più aperto tra chi crea queste tecnologie, con le proprie logiche di guadagno a breve termine, e chi si occupa di sviluppare nuovi farmaci e terapie, con i tempi che ciò richiede.

    Ciò nonostante, i biomarcatori digitali e gli organi su chip, con i loro innovativi sistemi multisensoriali, sembrano essere tra i principali fattori di cambiamento nell’ambito del percorso verso l’approvazione di un trattamento. L’enorme quantità di informazioni che queste tecnologie possono mettere a disposizione in tempo reale è una risorsa essenziale per fornire nuove conoscenze che possono cambiare il modo e la velocità con cui verrà sviluppata la medicina del futuro, a vantaggio soprattutto dei pazienti con forti bisogni ancora non soddisfatti. LEGGI TUTTO

  • in

    Dalle comete proviene il carbonio dei pianeti rocciosi

    La NASA e il suo partner Deutsches Zentrum für Luft- und Raumfahr (Agenzia Spaziale tedesca) hanno comunicato la loro intenzione di concludere la missione SOFIA (Stratospheric Observatory for Infrared Astronomy) entro il 30 settembre 2022.SOFIA è un interessante concetto di missione astronomica che si sostanzia in una sorta di “telescopio terrestre mobile”. Un telescopio riflettore del diametro di 2,5 m viaggia installato su di un Boeing 747SP modificato. Opera nella stratosfera, dove densità, temperatura e pressione dell’aria sono inferiori rispetto a quelle che si registrano nella troposfera, potendo in questo modo osservare lunghezze d’onda che altrimenti non raggiungerebbero la superficie terrestre.      .

     Il Boeing 747SP modificato per il trasporto del telescopio, si noti l’apertura attraverso cui opera l’osservatorio Credit: NASA

    Nei suoi cinque anni di missione principale, più i tre di estensione, SOFIA ha svolto una profittevole attività di ricerca scientifica. Nel 2015 ha potuto osservare la minuscola eclisse causata da Plutone passando davanti a  una stella lontana, nel 2016 ha rilevato la flebile presenza dell’ossigeno nell’atmosfera marziana e nel 2017 ha permesso di appurare che il pianeta nano Cerere è ricoperto di regolite proveniente in larga parte da altri corpi. Ora, però, la National Academies ha valutato che la produttività scientifica di SOFIA non giustifica i suoi costi operativi (in effetti piuttosto elevati).

    Una delle campagne osservative più importanti della carriera di SOFIA è stata l’osservazione della cometa Catalina nello spettro infrarosso e del suo prezioso carico di carbonio. 

    Catalina è una cometa non periodica, ossia una di quella comete che non segue un’orbita ellittica che la riporterebbe con scadenza regolare a far visita al sistema solare interno, per poi allontanarsi di nuovo (la cometa di Halley è una di queste). No, Catalina è transitata per la prima e unica volta abbastanza vicina alla Terra da poter essere rilevata dai telescopi nel 2016, per poi tuffarsi per sempre nelle profondità dello spazio.

    Originaria della lontana Nube di Oort, che è un gigantesco guscio sferico di detriti, una bolla che circonda l’intero sistema solare composta da trilioni di rocce e pezzi di ghiaccio risalente alle ultime fasi di formazione del sistema solare, Catalina – e altre comete del suo tipo – ha un’orbita così ampia da arrivare relativamente inalterata. Questo la rende effettivamente congelata nel tempo, offrendo ai ricercatori la rara opportunità di conoscere il sistema solare originale da cui proviene.

    Utilizzando potenti strumenti a infrarossi, SOFIA è stata in grado di rilevare un’impronta familiare all’interno del bagliore polveroso della coda della cometa: il carbonio. Questo dato cruciale sta aiutando la comunità scientifica a capire l’origine di questo fondamentale elemento. L’evidenza suggerirebbe che comete come Catalina sarebbero state una fonte essenziale di carbonio per pianeti come la Terra e Marte durante la formazione del sistema solare. I risultati dello studio di SOFIA, un progetto congiunto della NASA e del Centro aerospaziale tedesco, sono stati pubblicati sul Planetary Science Journal.

    «Il carbonio è la chiave per conoscere le origini della vita», ha affermato l’autore principale del documento, il dottor Charles “Chick” Woodward, astrofisico e professore presso il Minnesota Institute of Astrophysics dell’Università del Minnesota, a Minneapolis. «Non siamo ancora sicuri che la Terra abbia potuto intrappolare abbastanza carbonio da sola durante la sua formazione, quindi le comete ricche di carbonio avrebbero potuto essere una fonte importante per fornire questo elemento essenziale che ha portato alla vita come la conosciamo».

    Il carbonio è l’elemento fondamentale della vita così come la conosciamo ma, paradossalmente, il pianeta Terra, che ne è la culla, era troppo caldo nella sua fase di formazione per mantenere elevati livelli di elementi come il carbonio, che infatti andò perso. Nel sistema solare esterno, invece, le cose sono andate diversamente. Il vento solare ha spazzato via i detriti carboniosi fino alle propaggini più lontane del sistema solare, dove si sono accumulati, formando la Nube di Oort. 

    I ricercatori sono propensi a pensare che sia stato un leggero cambiamento nell’orbita di Giove a permettere poi a viaggiatori cosmici, come le comete, di mescolare il carbonio dalle regioni esterne alle regioni interne attraverso gli impatti, dove è stato incorporato in pianeti come la Terra e Marte. La composizione ricca di carbonio della cometa Catalina, dedotta dalle osservazioni di SOFIA, aiuta a spiegare come i pianeti formatisi nelle regioni calde e divenute povere di carbonio del primo sistema solare, si siano evoluti in pianeti ricchi dell’elemento di supporto della vita.

    «Tutti i mondi terrestri sono o sono stati soggetti agli impatti di comete e altri piccoli corpi, che trasportano carbonio e altri elementi», ha affermato Woodward. «Ci stiamo avvicinando alla comprensione di come questi impatti sui primi pianeti possano aver catalizzato la vita».

    Saranno però necessarie nuove osservazioni per sapere se anche le altre comete provenienti dalla Nube di Oort siano ricche di carbonio, come lo è Catalina, il che sosterrebbe ulteriormente il fatto che siano state le comete a fornire carbonio e altri elementi di supporto alla vita sul pianeta Terra. LEGGI TUTTO